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ABSTRACT 
 
Control systems for shakers are necessary to remove both shaker dynamics as well as coupling effects between 
the shaker and the structure under test.  Little attention has been given to shaker control for nonlinear structures. 
This paper presents the design, implementation and results of a shaker controller for a horizontal, cantilevered 
beam subjected to a non-uniform magnetic field. The objective of the shaker control is to ensure the acceleration 
at the tip of the beam follows a prescribed waveform. The parameters of the nonlinearity were determined using 
an extended Kalman filter, and the nonlinearity was subsequently cancelled via feedback linearization.  
 
NOMENCLATURE 
 
C Controller 
DOF Degree(s) of Freedom 
EKF Extended Kalman Filter 
P Plant, or physical system 
SISO Single input, single output 
 
Modal Space 
 
C System damping matrix  
I Identity matrix  
K System stiffness matrix  
M System mass matrix 
MAC Modal Assurance Critera  
POC Pseudo Orthogonality Criteria 
TU Mapping matrix between all DOF and reduced DOF  
U Eigenvectors or mode shapes  
e Pertaining to experimentally derived parameters  
u Pertaining to analytically derived parameters 
xn Entire analytical DOF 
xa Analytically correlated DOF 
xd Analytically discarded DOF 
Ω2 Natural frequency of mode shapes  
α Rayleigh damping coefficient for mass weighting 
β Rayleigh damping coefficient for stiffness weighting 
ωn Homogeneous natural frequency 
ζ Damping ratio 
 
Enhanced Kalman Filter 
 
C Equivalent strength of magnet (Nm^3) 
F Force from magnet 
Fx Force from magnet in direction tangent to arc of beam 
∆1 Distance between equilibrium points collinear to Fx 



∆2 Distance between end of beam and magnet, perpendicular to ∆1 
x Distance towards magnet from initial equilibrium point 
 
 
Feedback Linearization Controller 
B Transfer function relating force applied and acceleration at the end of the beam 
Be Estimated transfer function relating force applied and acceleration at the end of the beam 
Pe Estimated plant transfer function 
Vl Voltage into the linear plant 
Vn Voltage into the nonlinear plant 
d Grouped parameter relating magnet force to equivalent magnet strength 
x&&  Acceleration of tip of beam 
 
Subscripts 
 
a Analytically reduced matrix (accepted DOF) 
n Analytical complete set of DOF 
 
Superscript 
 
FEM Pertaining to the analytical finite element model 
G Generalized inverse  
T Transpose of a matrix 
-1 Inverse 
 
1.   INTRODUCTION 
 
Shakers are commonly used in environmental testing and to determine modal parameters of structures.  Control 
systems for shakers are necessary to remove both shaker dynamics as well as coupling effects between the 
shaker and the structure under test.  By inputting a known signal into the shaker and measuring the resulting 
response, frequency response functions can be developed and modal parameters extracted for modeling.  While 
shaker control systems have been around for decades, little attention has been paid to shaker control in nonlinear 
systems, even though nonlinear control systems have been evolving over the past two decades[1,2,3].  If 
nonlinearities in either the structure or environment exist, both the force inputted into the structure and the 
measured response can by influenced, making it very difficult to extract accurate modal parameters.  Therefore, 
FRF’s, while commonly used in nonlinear systems, have to be interpreted differently than if calculated for a linear 
system.   
 
The purpose of the project is to design and implement a shaker controller that will mitigate the effects of 
nonlinearity in a structural system.    Specifically, it is desired to design a shaker control system that forces the 
acceleration at the tip of the cantilevered beam to track a 10 Hz sine wave that is input near the fixed end of the 
beam.  The U-magnet placed near the free end of the beam introduces a nonlinear force.  The approach to 
ensuring tracking is fundamentally that of feedback linearization.  The nonlinear force exerted on the beam by the 
magnet is estimated through the use of an extended Kalman filter [4].  Mass, damping, and stiffness matrices 
used in the Kalman filter are derived using correlation, data reduction, validation, and some linear algebra 
techniques.  The nonlinearity is then cancelled with a feedback linearization controller, and a linear tracking 
controller is used to ensure the desired tracking is achieved.  
 
The remainder of this paper is organized into the sections of basic control terminology, experimental setup, modal 
parameter estimation, a discussion of the extended Kalman filter as applied to estimating the parameters of the 
nonlinearity, design of the feedback linearizing and tracking controllers, experimental results and conclusions. 
 
2.   CONTROLS AND CONTROL MODEL DESIGN 
 
In a simple single input, single output (SISO) feedback system, as shown in Figure 2.1, the plant is the system to 
be controlled [12]. 



 
Figure 2.1 - Block Diagram of Simple Feedback System 
 
A controller is designed such that the system transfer function, the ratio of output and input, produces a desired 
output given an input [12].  Without the feedback loop, the system is “open loop”, and the transfer function is [5]: 
  

P(s)C(s) (2.1) 
 
With the feedback loop, the system is “closed loop”, and the transfer function is [12]: 
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In an open loop system the controller has no information of how it has influenced the output, while in a closed 
loop system the controller uses the measured output to control the system.  While numerous controller designs 
exist, many are only applicable with plants that behave linearly.  However, some designs have proven effective in 
non-linear systems, most notably Lyapanov methods [13], adaptive and predictive controls [14], and the extended 
Kalman filter. 
 
 
3.   EXPERIMENTAL DESCRIPTION 
 
The test structure is shown in figure 3.1 and consists of a 6061-aluminum alloy cantilevered beam of dimensions 
24 x 2 x .125 inches (61 x 5.1 x .32 cm).  A steel piece of dimensions 1 x 2 x .125 inches (2.5 x 5.1 x .32 cm) was 
attached by screws to the free end of the beam.  Five inches (12.7 cm) from the fixed end of the beam, a stinger 
was threaded through the beam and connected to a Labworks ET-132-2 shaker.  The stinger attachment was not 
ideal in the sense that it produced undesired torsional moments and axial reactions.  This effect was absorbed 
into the “plant” and so became a moot point.  The non-ideal stinger did provide some complications later when an 
analytical model was developed.  Nonlinearity was introduced by placing a U-magnet of dimensions 1 x 1 x 1.44 
inches (2.5 x 2.5 x 3.66 cm) and a characteristic gap of .38 inches (.97 cm) at the free end of the cantilever beam.  
The bottom of the magnet was aligned with the bottom of the beam and placed .41 inches (1.0 cm) from the 
beam.  This placement allowed the beam to move freely without touching the magnet, ensuring no contact 
nonlinearities would be introduced.  The attraction of the steel piece and the magnet created a second equilibrium 
point for the beam .45 inches (1.1 cm) away from its natural equilibrium point.   
 
To determine the modal parameters of the beam from the impact tests, a four-channel Dactron Photon data 
acquisition system was utilized.  When the shaker was not attached, a PCB 086C03 impact hammer with a soft 
plastic tip was used to excite the structure.  The soft plastic tip was chosen so that it would predominantly excite 
the first three bending modes.  When the shaker was attached, a sine chirp ranging from 1-250 Hz in ten seconds 
was input into the shaker.  Three PCB 352A24 accelerometers were placed equidistantly along the midplane of 
the beam.  These measurements were obtained using the DACTRON Photon FFT Analyzer and the FRF data 
was reduced using the Vibrant Technology ME’scope software.   
  
The data acquisition system for the control experiments was composed of a PC running the Mathworks XPC 
Target real time operating system.  The PC was equipped with a National Instruments PCI-6052E data acquisition 
board.  Output signals were amplified by a Labworks PA-138 amplifier and sent to the shaker.  A PCB 352A24 
teardrop-style accelerometer was attached to the free end of the cantilever beam to measure acceleration.  
Software required to run the data acquisition system included MATLAB, Simulink, the Real-Time Workshop, and a 
C compiler.  For each test run, the controller created in Simulink was built and sent to the signal conditioner via 
the network by xPC Target. 
 
To illustrate the picture below, the letters correspond to the following equipment (PC not shown): 

a. National Instruments signal conditioner SC2345 
b. Labworks PA-138 amplifier 



c. Labworks ET-132-2 electromechanical shaker 
d. Test Structure – 6061 Aluminum 
e. Permanent, stationary U-magnet 

 

(a) 
(b) 

(c) 

(d) 
(e)  

 
4.   MODAL PARAMETER ESTIMATION 
 
In the course of developing a model-based control algorithm, estimation of the system mass [M], damping [C], 
and stiffness [K] matrices was required.  The complete plant consisted of the mechanical structure as well as the 
electromechanical dynamics from the shaker and unknown dynamics from the signal conditioner and amplifier.  It 
is therefore potentially difficult to obtain an accurate set of system matrices.  Initially, to help alleviate this problem 
the shaker was disconnected and only the beam was considered.   
 
The first step was to perform an impact hammer test on the structure to obtain modal data.  Next, a finite element 
model was developed to give predicted modal data [5,8].   
 
It was then necessary to quantitatively compare the two data sets.  A data reduction scheme known as system 
equivalent reduction expansion process (SEREP) was employed on the analytical model data [7,8,11].  This 
process formed a mapping between the total number of analytical degrees of freedom (DOF) and the 
experimental degrees of freedom.  Through this method, a well-correlated and truncated set of degrees of 
freedom was produced and still retained the original fidelity of the analytical model.   
 
The following equation illustrates the relationship between the accepted, or retained, degrees of freedom and the 
discarded degrees of freedom 
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where xa is the accepted set of degrees of freedom and xd is the discarded degrees of freedom. 
The reduced matrices can be determined from 
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where 
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and Un is the modal shape vector for all degrees of freedom and Ua is the modal shape vector for only the 
accepted degrees of freedom. 

 
Then, in order to validate that this procedure represents the actual system, inclusive of the shaker and 
electronics, comparisons were made with respect to the eigenvectors produced by the experimental and 
analytical models.  The mode shapes were compared using the Modal Assurance Criteria (MAC) [6,8] 

{ } { }[ ]
{ } { }[ ] { } { }

MAC
u e

u u e e
ij

i
T

j

i
T

i j
T

j

=






2

   

 (4.4) 



where ui and ei are the analytical and experimental modal shape vectors, respectively. 
and the Pseudo Orthogonality Check (POC) [7,8]. 
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The results of these checks are shown in Figures 7.1-1 and 7.1-2, respectively.   
 

Next, an estimate of the reduced mass and stiffness system matrices were determined using two approaches.  
The first method incorporated the SEREP method outlined above for the analytical model.  The second method 
used the odal vectors for the system using  generalized inverse of the m
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for a square matrix.  The damping matrix was developed using a proportional approximation.  This method is 
called Rayleigh damping, whereby the damping matrix is related to the linear combinations of the mass and 
stiffness matrices. 

][][][ KMC βα +=  (4.8) 
Here alpha and beta are the Rayleigh damping coefficients and relate to each other by 
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Rayleigh damping uncouples every mode from every other mode.  The modes are therefore linearly independent.  
The generalized inverse takes the modal damping in modal space and projects it to physical space to obtain the 
estimate for the physical damping matrix.  MEscope’s curve fitting process is also based on proportional damping, 
which is why the matrix is diagonal in modal space [9].  Natural frequencies and modal damping are obtained 
from MEscope and therefore facilitates the software to make an accurate physical damping matrix. 
 
Both of these approaches estimated the exact same analytical mass and stiffness matrices.  This same process 
was exte ass the measured experimental shape vectors using nded to encomp
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Once the measured experimental mass and stiffness system matrices were developed, they were compared to 
the system matrices that were analytically derived.  The results of this comparison showed that the system 
matrices were in close agreement.  These results validated this process to be used on the actual plant, inclusive 
of the shaker and electronics.   
  
Lastly, the experimental frequency response functions of the real plant were obtained through the DACTRON 
Photon FFT analyzer and the modal parameters were extracted using the MEscope Modal Analysis software.  
The system matrices were then computed using the same procedures outlined above.   
 
5.   EXTENDED KALMAN FILTER IMPLEMENTATION 
 
As a state estimator, the extended Kalman filter (EKF) utilizes a predictor/corrector technique to estimate states 
governed by a time varying process [4].  Unlike an ordinary Kalman filter, the extended Kalman filter first 
linearizes the estimation with respect to the mean and the covariance of the current state and then independently 
solves for each point in time.  Two sets of equations characterize the filter:  1) time update equations that function 



as the predictor and 2) measurement update equations, which function as the corrector.  The former projects the 
current state along with error covariance into the next time step while the latter incorporates new measurements 
that are adjusted by the Kalman gain into the predictor estimate.  Using a three-degree of freedom model to 
describe the system being estimated, the EKF is validated when constant parameters are estimated and 
converge to the given initial conditions.     
 
In this application, the extended Kalman filter was used to estimate unknown attributes of the magnetic force, 
namely, the strength of the magnet and distances from the free end of the beam.  The magnetic force was 
assumed to be [15]:  

3d
CF =  (5.1)Only the lateral component of the force was of interest and is given by 
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where ∆1, ∆ 2 and C are distances from the tip of the beam to the magnet and the strength of the magnet, 
respectively (Figure 5.1).  Assuming a three-degree of freedom model with viscous damping to represent the 
beam, equations of motion were developed, which used the calculated mass, stiffness, and damping matrices.  A 
Matlab[10] model was developed using simulated displacement data to verify that C, ∆1, and ∆2 estimates 
converged.  Once the script was verified, it was adjusted to incorporate experimental displacement data.  
Acceleration time histories from the three modeled points were collected, integrated twice, and high-pass filtered 
to produce displacement.  The Matlab “cumtrapz” was used to integrate the data.  The Matlab “filtfilt” command 
was used to high-pass filter the data in both directions, eliminating the low-frequency trends without introducing 
phase error.  Using this displacement data, the strength and distance parameters were determined and checked 
for convergence.   

1

beam  
 
 
 
 
 
 
 t 
Figure 5.1 - Assumed geometry for distance and 
 
6.   CONTROL DESIGN 
 
Two controllers, a tracking controller and a feedb
 
6.1 Tracking Controller 
 
A tracking controller seeks to force the output wa
the open loop transfer function (equation 2.1) at a
transfer function (equation 2.2) at that frequency 
particular frequency will then be outputted with th
controller that tracks a 10 Hz sinusoid of amplitud
 
6.2   Feedback Linearization Controller 
 
The block diagram in Figure 6.2 depicts the syste
acceleration was written as: 
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Figure 6.2 – Block diagram of system without magnet 
 
With the magnet added, the acceleration was: 
 

)(xBFPVx mn +=&&  (6.2) 
 
The effect of the magnet was subtracted out by setting: 
 

)(1 xFBPVV xeeln
−−=  (6.3) 

 
where Fx was estimated by equation 5.2, and the parameters of this equation were estimated by the Kalman filter 
discussed in the previous section.  To determine displacement the acceleration was integrated twice and high-
pass filtered to remove any DC offset and other low-frequency trends in the acceleration.  Pe and Be were easily 
estimated by developing a transfer function whose frequency response closely matched the frequency response 
function of the tip of the beam and plant, respectively. 
 
The new plant became the combination of the plant without the magnet, the effect of the magnet, and the 
feedback linearization controller.  In theory, if Fx estimates the effect of the magnet well, it will eliminate the effect 
of the magnet and the tracking controller should track with no steady state error.  A block diagram of the system 
with the magnet is below. 

 
Figure 6.3 – Block diagram of system with magnet 
 
7.   RESULTS 
 
Without the magnet attached, the tracking controller was able to track a 0.5V amplitude sinusoid at 10 Hz, as 
seen in Figure 7.1. 

 
Figure 7.1 – Response measured of a 0.5V sine wave input at 10 Hz with no magnet attached 
 
With the introduction of the magnet, at low input amplitudes the controller designed to track 10 Hz was still able to 
maintain the phase and overall shape of the sine wave.  However, the response exhibited bleeding, where the 



peaks and troughs were lower than the inputted wave.  At input amplitudes of at least .5V, the beam came close 
enough to the magnet to be pulled into a remote, non-periodic attractor. 

(a) (b) 

Figure 7.2  - Response measured with the magnet attached of a 10 Hz sine wave input with an amplitude of (a) 
0.48 V (b) 0.5 V 
 
7.1   Modal Parameter Estimation Results 
 
The MAC and POC values are in Tables 7.1-1 and 7.1-2, respectively.  The MAC is an expedient method for 
obtaining a first indication of how well the analytical and experimental vectors correlate.  As can be seen by the 
tabled results, the diagonal matrix contained values that were all close to one.  This then indicated a high level of 
correlation.  MAC(2,3), indicating mode 2 from the analytical model and mode 3 from the experimental results, 
showed a significant amount of correlation with respect to the other off diagonal terms.  However, in light of the 
fact that the diagonal terms were so close to one, it was assumed that the modal vectors were well correlated. 
 

Table 7.1-1 - Modal Assurance Criteria with Stinger 
0.9947 0.0550 0.0624 
0.0314 0.9963 0.2253 
0.0785 0.0752 0.9664 

   
Table 7.1-2 - Pseudo Orthogonality Check with Stinger

0.9977 -0.0625 0.0243 
-0.0059 -0.9978 -0.0664 
-0.1004 0.1810 -0.9783 

 
Pertaining to the POC, this formulation is simply a comparison between the analytical modal vector and the 
experimental modal vector.  To be able to employ this triple product, all matrices must have equal inner 
dimensions.  For this to occur, a necessary data expansion or reduction, or both, was necessary.  To achieve 
matrices with equal inner dimensions a finite element model was constructed with many DOFs and then truncated 
down to the high fidelity model.  In regards to the negative values in the diagonal, even though the modal 
displacement vectors have negative quantities here (due to the shape of the 2nd and 3rd bending modes), the 
reason that they are negative was simply that the sum of the three products for each term in the matrix was 
negative because of the relative magnitudes. 
 
7.2   Extended Kalman Filter Estimation Results 
For the simulated EKF, estimated values of C, ∆1, and ∆2 converged to given parameters which verified the model.   
Sensitivity of the model was also examined.  Although amplitude of the forcing function made less than 1% 
difference in the convergence, initial conditions and estimates were highly sensitive parameters.  Convergence 
only occurred on 10-2 m and 10-3 m orders of magnitude as long as the estimate was within ±50% of the initial 
condition.  Experimental data in the filter showed that C oscillated in the range of ±1e-5 Nm3 rather than 
converging, thus indicating the force of the magnet was more complex than modeled.  Values of ∆1 and ∆2 did not 
converge either, however, they were well behaved and stayed within one order of magnitude.  Although 
convergence did not occur for these parameters, only the order of magnitude was required to make an initial 
design for a controller. Through the estimation of these parameters, the nonlinear effect of the magnet was 
determined and subtracted from the input to the shaker. 



 
To verify that C, ∆1, and ∆2   were reasonably estimated, the equilibrium points of the beam were found by 
substituting the force from the magnet into the static deflection equation.  Since C oscillated, the average value of 
1.05e-7 Nm3 was input; however, an equilibrium point at 0.008m was found that was not physically represented in 
the system.  By slightly adjusting C to 1e-8 Nm3, which is within one standard deviation (1.1e-6 Nm3), three 
equilibrium points were found at 0.00016m, 0.0058m, and 0.0080m.  The first and third points were visually 
confirmed although the second was not because it is unstable.  The need to adjust C further confirmed that the 
model approximated, but did not completely describe the system.    
 
7.3   Structure with Feedback Linearization Controller 
 
The estimates from the extended Kalman filter provided good estimates for the parameters ∆1, ∆2.  However, for 
the feedback linearization controller to compensate for the nonlinearities, the ∆1 and ∆2 were adjusted to .006 cm 
and .001 cm respectively.  The adjustment was probably needed because the equation 5.2, which modeled the 
lateral component of the magnetic force, did not characterize the magnetic force correctly.   
 
With the feedback linearization controller the system could now track at .5V in the presence of the magnet.  The 
controller was able to track amplitudes up to .52V.  At higher amplitudes more gain was needed to counteract the 
effects of the magnet, but the D/A channel saturated at 10 V, so with the equipment available we were not able to 
achieve stability.  At amplitudes lower than .5V the feedback linearization controller had negligible effect and did 
not adversely affect the stability of the system. 
 
 

 
Figure 7.3 - Sample of response measured of a 10 Hz sine wave input with an amplitude of .5V with controller 
 
8.   CONCLUSION 
Using an extended Kalman filter proved effective in estimating the parameters that determine nonlinearity, and the 
feedback linearization controller used those values to make the unstable system stable.  Although the feedback 
linearization controller did not eliminate the force of the magnet, it compensated for the nonlinearity enough  to 
allow tracking at higher amplitudes.  While the parameters could have been measured by hand, had the 
nonlinearity been inaccessible the extended Kalman filter would have still been able to estimate the parameters.  
This project demonstrated that in a simple structure with a well-defined nonlinearity, shaker control can be 
developed to mitigate the effect of the nonlinearity. 
 
Recommendations for future research include the following: 
 

1. Apply the same technique on a more complex structure 
2. Apply the same technique with a less well-defined nonlinearity 
3. Create a tracking controller over a broader frequency range and test the tracking 
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